TOXO DOCS
Complete documentation for the TOXO Python Library - Transform any LLM into a Context Augmented Language Model (CALM)
pip install toxoQuick Start
Get up and running with TOXO in minutes
# Install the TOXO Python Library
pip install toxo
# Import and use the .toxo file
from toxo import ToxoLayer
# Load your trained CALM layer
layer = ToxoLayer.load("viral_linkedin_ultimate.toxo")
# Connect to ANY LLM with specific model selection
# Gemini (recommended)
layer.setup_api_key("your_gemini_key", "gemini-2.0-flash-exp", "gemini")
# OpenAI GPT
layer.setup_api_key("your_openai_key", "gpt-4", "openai")
# Claude
layer.setup_api_key("your_claude_key", "claude-3.5-sonnet", "claude")
# Your LLM is now a domain expert!
response = layer.query("Create a viral LinkedIn post about AI trends")
print(response)Core Concepts
Smart Layers
TOXO creates intelligent layers that attach to any LLM API, providing instant domain expertise without retraining.
CALM Technology
Context Augmented Language Models (CALM) enhance any black-box LLM with persistent knowledge and domain expertise.
Universal Compatibility
Works with ANY LLM: Gemini, GPT, Claude, local models, and custom APIs. No model-specific training required.
API Reference
ToxoLayer.load(path)
Load a trained smart layer from a .toxo file
path- Path to the .toxo file
setup_api_key(key, model, provider)
Configure API credentials and model selection
key- Your API keymodel- Model name (e.g., "gpt-4", "gemini-2.0-flash-exp")provider- Provider ("openai", "gemini", "claude")
query(prompt)
Query the enhanced LLM with domain expertise
prompt- Your query or prompt
query_async(prompt)
Asynchronous version for high-performance applications
prompt- Your query or prompt
Advanced Features
Memory Systems
Establish context once and use it across all future queries
# Establish context once (Memory Systems)
from toxo import ToxoLayer
layer = ToxoLayer.load("viral_linkedin_ultimate.toxo")
layer.setup_api_key("your_gemini_key", "gemini-2.0-flash-exp", "gemini")
# Teach the layer about you/your brand once
layer.query("""
Remember these details about me:
- I'm the founder of Toxo (AI training platform)
- Target audience: AI/ML professionals and startup founders
- Goal: Build thought leadership and drive B2B leads
""")
# Subsequent queries will automatically use this context
response = layer.query("Create a 7-day LinkedIn content plan tailored to my audience")
print(response)Response Ranking
Generate multiple options and get AI-evaluated rankings with reasoning
# Generate multiple options and rank them (Response Ranking)
from toxo import ToxoLayer
layer = ToxoLayer.load("viral_linkedin_ultimate.toxo")
layer.setup_api_key("your_openai_key", "gpt-4", "openai")
prompt = """
Generate 5 LinkedIn post ideas about AI trends in 2025.
Rank them from 1-5 by viral potential, engagement likelihood, and business impact.
For each, explain the ranking decision and suggested call-to-action.
"""
response = layer.query(prompt)
print(response)Capability Detection
Programmatically discover domain, components, and capabilities of your layer
# Discover what your .toxo layer can do (Capability Detection)
from toxo import ToxoLayer
layer = ToxoLayer.load("viral_linkedin_ultimate.toxo")
layer.setup_api_key("your_claude_key", "claude-3.5-sonnet", "claude")
info = layer.get_info()
print("Domain:", info.get("domain"))
print("Training examples:", info.get("training_examples"))
print("Components:", info.get("components"))
caps = layer.get_capabilities()
print("Capabilities:", caps)Async Support
High-performance async queries for production applications
import asyncio
from toxo import ToxoLayer
async def main():
# Load your trained CALM layer
layer = ToxoLayer.load("viral_linkedin_ultimate.toxo")
# Setup API key for your preferred LLM
layer.setup_api_key("your_api_key", "gpt-4", "openai")
# Query with domain expertise
response = layer.query("Write a compelling LinkedIn post about AI innovation")
print(response)
# Async support for production applications
async_response = await layer.query_async("Analyze market trends for AI startups")
print(async_response)
asyncio.run(main())Continuous Learning
Improve performance with feedback and suggestions
# Provide feedback to enhance performance
layer.add_feedback(
question="Investment strategy question",
response="Generated response...",
rating=8.5 # Quality score 0-10
)Multi-Agent Systems
Orchestrate multiple specialized layers for complex workflows
# Multiple domain experts working together
research_agent = ToxoLayer.load("research_expert.toxo")
writing_agent = ToxoLayer.load("writing_expert.toxo")
# Setup different providers for each agent
research_agent.setup_api_key("gemini_key", "gemini-2.0-flash-exp", "gemini")
writing_agent.setup_api_key("openai_key", "gpt-4", "openai")
# Collaborative AI workflow
research = await research_agent.query_async("Research quantum computing")
report = await writing_agent.query_async(f"Write report: {research}")Memory Systems
Establish context once and use it across all future queries
# Establish context once (Memory Systems)
from toxo import ToxoLayer
layer = ToxoLayer.load("viral_linkedin_ultimate.toxo")
layer.setup_api_key("your_gemini_key", "gemini-2.0-flash-exp", "gemini")
# Teach the layer about you/your brand once
layer.query("""
Remember these details about me:
- I'm the founder of Toxo (AI training platform)
- Target audience: AI/ML professionals and startup founders
- Goal: Build thought leadership and drive B2B leads
""")
# Subsequent queries will automatically use this context
response = layer.query("Create a 7-day LinkedIn content plan tailored to my audience")
print(response)Response Ranking
Generate multiple options and get AI-evaluated rankings with reasoning
# Generate multiple options and rank them (Response Ranking)
from toxo import ToxoLayer
layer = ToxoLayer.load("viral_linkedin_ultimate.toxo")
layer.setup_api_key("your_openai_key", "gpt-4", "openai")
prompt = """
Generate 5 LinkedIn post ideas about AI trends in 2025.
Rank them from 1-5 by viral potential, engagement likelihood, and business impact.
For each, explain the ranking decision and suggested call-to-action.
"""
response = layer.query(prompt)
print(response)Capability Detection
Programmatically discover domain, components, and capabilities of your layer
# Discover what your .toxo layer can do (Capability Detection)
from toxo import ToxoLayer
layer = ToxoLayer.load("viral_linkedin_ultimate.toxo")
layer.setup_api_key("your_claude_key", "claude-3.5-sonnet", "claude")
info = layer.get_info()
print("Domain:", info.get("domain"))
print("Training examples:", info.get("training_examples"))
print("Components:", info.get("components"))
caps = layer.get_capabilities()
print("Capabilities:", caps)Supported LLM Providers
Google Gemini
Recommended - optimized integration
- • gemini-2.0-flash-exp
- • gemini-1.5-pro
- • gemini-1.5-flash
OpenAI GPT
Full GPT model support
- • GPT-4
- • GPT-4o
- • GPT-3.5-turbo
Anthropic Claude
Advanced reasoning models
- • claude-3.5-sonnet
- • claude-3-haiku
- • claude-3-opus